Photocatalytic Decomposition of H₂O into H₂ and O₂ over Ga₂O₃ Loaded with NiO

Takashi Yanagida, Yoshihisa Sakata,* and Hayao Imamura

Department of Advanced Materials Science and Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai Ube, 755-8611

unuguchi Oniversity, 2-10-1 Tokiwadai Obe, 755-0011

(Received February 25, 2004; CL-040220)

Photocatalytic decomposition of H_2O over NiO-loaded Ga_2O_3 , one of the oxides with a d^{10} electron configuration, was confirmed. Without pretreatment, both H_2 and O_2 have been continuously produced in stoichiometric amounts under the irradiation of high pressure Hg lamp.

Decomposition of H₂O into H₂ and O₂ using a suitable photocatalyst is an attractive research target and various photocatalyst systems that are effective in this reaction have been found.¹ In particular, oxides and mixed oxides of Ti⁴⁺, Nb⁵⁺, Zr⁴⁺, and Ta^{5+} , which have a d⁰ electron configuration, are effective photocatalyst systems, generally in combination with loaded NiO or RuO₂ as promoter for the photocatalytic decomposition of H₂O. Recently, the mixed oxides of Ga³⁺,² In³⁺,³⁻⁷ Sn⁴⁺,³ and Sb^{5+} , ^{3,8} with a d¹⁰ electron configuration and promoted with RuO₂ have also been found to be effective photocatalysts for the decomposition of H₂O into H₂ and O₂. However, the photocatalytic property of these oxides with d¹⁰ electron configuration with respect to the decomposition of H₂O has not been investigated so far. Ga₂O₃ is one of the series of these oxides and has relatively wide band gap.9 The photocatalytic properties of both Ga₂O₃ and the corresponding solid solution with In₂O₃ have been studied. The photocatalytic properties were evaluated using either H₂ or O₂ production from aqueous solutions of methanol or AgNO₃ as photo-produced hole and electron scavenger.9 This means that this oxide has a potential as photocatalyst to produce H₂ and O₂ from H₂O decomposition, yet few investigations have applied Ga₂O₃ as a photocatalyst for the direct decomposition of H₂O.

In this work, we have studied the photocatalytic properties of Ga_2O_3 as a pure oxide photocatalyst with d^{10} configuration. Here we report the photocatalytic behavior of NiO-loaded Ga_2O_3 to the overall splitting of H_2O .

The Ga₂O₃ photocatalyst used in this work was obtained from High Purity Chemical. The structure of crystal was shown to be monoclinic in XRD measurements. In the UV-diffuse reflectance spectrum of the Ga₂O₃, a strong absorption band, originating from band-gap excitation, was observed at a wavelength shorter than 274 nm. The band-gap energy is estimated to be 4.5 eV from the absorption edge of the spectrum. The loading of NiO was carried out by impregnation. Powdered Ga₂O₃ was suspended in Ni (NO₃)₂ (Wako Pure Chemical) aqueous solution and dried over a steam bath. The obtained Ni $(NO_3)_2/Ga_2O_3$ was oxidized in air at 473 K to obtain NiO/Ga₂O₃. The catalyst was not changed substantially after loading with NiO at the any content confirmed by XRD analysis. The photocatalytic reaction was carried out in an inner irradiation type photo-reaction cell made of quartz. The cell was attached with closed gas circulation system equipped with sample inlet for analysis and vacuum line. The catalyst (1 g) was suspended in well-outgassed H₂O in the cell and irradiation from high pressure Hg lamp (450 W USHIO UM-452) started. The evolved gases were analyzed by gaschromatograph.

The progress of the photocatalytic reaction of H₂O decomposition over the Ga2O3 loaded with 2 wt % of NiO (NiO $(2 \text{ wt } \%)/\text{Ga}_2\text{O}_3)$ is shown in Figure 1. Production of H₂ and O₂ was observed after an initial induction period for 2h from which the irradiation from the high pressure Hg lamp started. In the initial stages of the reaction, it is noticeable that more O₂ was produced than the stoichiometric ratio of the decomposition of H₂O. Moreover, the color of the photocatalyst changed from light gray to dark purple. In previous papers studying NiO supported on photocatalysts, such as NiO/SrTiO₃,¹⁰⁻¹² the preferable condition of the NiO promoter was the mixture of Ni metal, NiO, and the hydroxide. Therefore, pretreatments of reduction and re-oxidation of NiO were necessary to activate the photocatalysts. This result indicates that reduction of supported NiO occurs in the initial stages and is accompanied by the production of O₂. After this induction period, the state of NiO over Ga_2O_3 has become the preferable condition for this promoter for the photocatalytic decomposition of H₂O. A similar property has been observed in some other NiO-loaded photocatalyst systems for H₂O decomposition, such as NiO/NaTaO₃ and NiO/ Sr₂Ta₂O₇.^{13,14}

As shown in Figure 1, the reaction was observed for 29 h during the first run and a constant rate of production of H_2 and O_2 was confirmed. Then, the irradiation was stopped and the gas phase was evacuated. The reaction cell was kept in dark for 1 h, the absence of production of H_2 and O_2 was confirmed, and then the irradiation of second run started.

Figure 1. Evolution of H_2 and O_2 in time during photocatalytic decomposition of H_2O over NiO (2 wt %)/Ga₂O₃.

Figure 2. Dependence of the photocatalytic activity for H_2 and O_2 evolution from H_2O on the amount of NiO over Ga_2O_3 .

In the second run, it was confirmed, see Figure 1, that H_2 and O_2 were produced at a constant rate in stoichiometric ratio from the beginning of the irradiation and that the production rates were the same as in the first run. These results clearly demonstrate that the photocatalyst of Ga_2O_3 loaded with NiO has a potential for the photocatalytic decomposition of H_2O into H_2 and O_2 . In order to understand the effect of NiO promoter over Ga_2O_3 in the photocatalytic decomposition of H_2O , the photocatalytic reaction was carried out over Ga_2O_3 loaded with the various amount of NiO.

Figure 2 shows the dependence of the photocatalytic activity of H_2O decomposition over Ga_2O_3 on the amount of loaded NiO. The photocatalytic reactions were carried out in the same manner as the examination of NiO $(2 \text{ wt }\%)/Ga_2O_3$ as shown in Figure 1. The activity shown in Figure 2 was defined as the amount of evolved H_2 and O_2 in 1 h during the 2nd run. It can be seen that only H_2 production was observed when Ga_2O_3 itself was used as the photocatalyst without NiO loading. The activity was also relatively low.

When NiO-loaded Ga_2O_3 was used, the photocatalytic activity remarkably improved with increasing the amount of loaded NiO and the simultaneous evolution of H_2 and O_2 in the stoichiometric ratio was observed. It is also observed that the photocatalytic activity to the production of H_2 and O_2 was dependent on the amount of loaded NiO. Particularly, Ga_2O_3 loaded with 2 wt % of NiO exhibited maximum activity, with the activity decreasing when more than 2 wt % NiO was loaded. These results suggest that NiO loading is necessary for the photocatalytic decomposition of H_2O into H_2 and O_2 , and that Ga_2O_3 loaded with 2 wt % of NiO is the preferable photocatalyst for the photocatalytic decomposition of H_2O .

In conclusion, we have demonstrated the photocatalytic decomposition of H₂O into H₂ and O₂ over NiO loaded Ga₂O₃, one of the pure oxides with a d¹⁰ electron configuration. NiO loading is necessary to induce the stoichiometric formation of H₂ and O₂ by photocatalytic decomposition of H₂O. Although further detailed examination is necessary, the results obtained in this investigation are important to report, together with this new photocatalyst system for H₂O decomposition.

This work was supported by CREST of JST.

References

- 1 A. Kudo, *Hyoumen*, **36**, 625 (1998) and the references there in.
- 2 K. Igarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 106, 9048 (2002).
- 3 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, *J. Phys. Chem. B*, **105**, 6061 (2001).
- 4 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, *Chem. Lett.*, 2001, 868.
- 5 J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, and Y. Inoue, J. Photochem. Photobiol., A, 158, 139 (2003).
- 6 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 107, 7965 (2003).
- 7 J. Sato, H. Kobayashi, and Y. Inoue, J. Phys. Chem. B, 107, 7970 (2003).
- 8 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, *J. Photochem. Photobiol.*, *A*, **148**, 85 (2002).
- 9 A. Kudo and I. Mikami, J. Chem. Soc., Faraday Trans., 94, 2929 (1998).
- 10 K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, J. Chem. Soc., Chem. Commun., **1980**, 543.
- 11 K. Domen, S. Naito, T. Onishi, K. Tamaru, and M. Soma, J. Phys. Chem., 86, 3657 (1982).
- 12 K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda, *J. Phys. Chem.*, **90**, 292 (1986).
- 13 H. Kato and A. Kudo, Catal. Lett., 58, 153 (1999).
- 14 A. Kudo, H. Kato, and S. Nakagawa, J. Phys. Chem. B, 104, 571 (2000).